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Part 1: Reinforcement Learning (RL)
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RL: Fundamentals 

Goal: learn to make good decisions in an uncertain 
environment to maximise accumulated reward
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RL: Examples

Game playing: Medical decision support systems:

Patient physiological 
state

Medication dosage
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https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf

https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf


RL Problem Formulation:
Markov Decision Processes (MDPs)
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Policy:  

Return:

Goal of agent: Find an optimal policy: 

Some definitions
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Action-Value function (or Q-function)

Recursive definition:
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Optimal action value function
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Methods

Key question: How to learn optimal policy?

• Q-value iteration

• Q-learning

• Fitted Q-Iteration (FQI)

• Deep Q-learning 
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Q-value iteration: Algorithm

Discrete state space and discrete action space

Keep a table of Q(s,a), for every (s,a) pair; initialise to zero

Requires P(s’| s, a), R(s, a, s’)

Iterate:
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Q-value iteration: Challenges

Requires discrete state and action space

Requires known P (s’ | s, a)

Requires reward function to be specified 
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Q-learning: Algorithm
Discrete state and action spaces

Keep a table of Q(s,a) for every (s,a) pair; initialise to zero

Don’t require P(s’| s, a): use data, tuples of (s, a, r, s’) instead

Iterate:
Observe transition (s, a, r, s’)

NOTE: 
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Q-learning: Challenges

Discrete state and action spaces are strong assumptions

Data inefficient
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Q-learning/Q-value iteration: Visually
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Up Down Left Right

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0
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Initialisation

Up Down Left Right
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Fitted Q-Iteration (FQI)

Continuous state space 

Parameterise Q(k)(s, a; θ(k)) with parameter vector θ(k) ; Q(0)(s, a; θ(0)) = 0 

Uses dataset of N (s, a, r, s’) tuples

Iterate:

TD ERROR
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Deep Q learning

In healthcare, similar to FQI, except:
• Q-function represented with neural network – a Deep Q Network (DQN)

• Main and target networks, with different parameters, to define loss 
function

Various tricks to improve learning speed and learning stability
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Deep Q learning visualised (discrete action space)

18Part 1: Reinforcement Learning

State

Action 1: 
Q-value

Action 2: 
Q-value

Action 3: 
Q-value

Action n: 
Q-value

…

Q-network



Summary of algorithms
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Algorithm State space Action space Transition? Reward? Data?

Q –value iteration Discrete Discrete Yes Yes No

Q-learning Discrete Discrete No No Yes

Fitted Q-Iteration Continuous Either No No Yes

Deep Q learning Continuous Either No No Yes



Part 2: Clinical applications
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RL in medicine: Themes

Lack of simulator

Small datasets

Unobserved, confounding variables 
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RL in medicine: Challenges

1. Defining state space, action space, reward function

2. Computing safe policy in data-efficient manner

3. Evaluating policy
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Case study: Treatment of Sepsis in ICU
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Clinical motivation
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Sepsis: severe infection, typically 
involving organ dysfunction

Leading cause 
of mortality

Expensive to 
treat

Suboptimal 
medical 

treatment



Dataset

Cohort: sepsis patients from ICU

Patient ID Timestep Demographics Vitals Lab values Treatments Outcome

00001 1 Age, Gender, … HR, BP, … Albumin, … IV, vasopressor, 
…

Survived

00001 2 … … … … … 

25Part 2: Clinical applications



State space

Discrete [1], [2]

~ 1000 Cluster centroids from k-means

Continuous vector from raw ICU data [3], [4]

Continuous state using recurrent autoencoder embedding [5]

Capture historical information in latent representation of autoencoder

Patient ID Timestep Demographics Vitals Lab values Treatments Outcome

00001 1 Age, Gender, … HR, BP, … Albumin, … IV, vasopressor, 
…

Survived

00001 2 … … … … … 
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Action space

Discretised over dosage amounts of IV fluids and vasopressors
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Patient ID Timestep Demographics Vitals Lab values Treatments Outcome

00001 1 Age, Gender, … HR, BP, … Albumin, … IV, vasopressor, 
…

Survived

00001 2 … … … … … 



Reward function

Mortality event [1], [2], [3]

Can add intermediate signal [4]

Issue: sparse, hard to learn from

Log odds of mortality [5]

Regressor: predict mortality probability from (s, a, s’)

Reward: change in mortality probability

Issue: dependent on quality of reward predictor
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Patient ID Timestep Demographics Vitals Lab values Treatments Outcome

00001 1 Age, Gender, … HR, BP, … Albumin, … IV, vasopressor, 
…

Survived

00001 2 … … … … … 



Methods

Q-value iteration [1], [2] :
Discrete state space, 
estimate P(s’|s, a) and R(s, a, s’) from data

Deep Q learning [3], [4] :
Standard Q network, with some additional tricks

Mixture of Experts: Deep Q Learning & 
Kernel-based expert [5] :

Safe policy discovery
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Up Down Left Right

0 0 0.5 0 0

1 0 0 1 0

2 0 0.8 0 0

3 1 0 0 0.75



Mixture of Experts

DQN expert: Deep Q learning, restricted
to actions seen in neighbour states

Kernel expert: based on 
clinical actions in neighbour states

Learn gating function to 
choose between them

Safe policy – will not recommend unseen 
actions
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Patient state 

Kernel 
expert

DQN expert

gate πm



Off-Policy Evaluation

Objective: find quality of learned policy πe:

Estimate given data from πb – clinical policy
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Doctor: πb Data
generates

Learned 
policy: πe
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Off-Policy Evaluation – challenges (from [6])

Importance sampling: high 
variance, crucial to estimate πb
accurately

Model-based estimation: 
unknown bias
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From [5]:
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Areas to consider

Best state representation?

Can we formulate better rewards?

How do we better utilise clinical policy in our treatment strategies?

Different methods for evaluation with lower variance?

What do doctors want to see with RL in medicine?
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